Advertisement

Evidence-Based Approach to Orthobiologics for Osteoarthritis and Other Joint Disorders

  • Katarzyna Herman
    Affiliations
    O.A.S.I. Bioresearch Foundation Gobbi N.P.O, Via G.A. Amadeo, 24, Milan 20133, Italy

    Department of Orthopedics and Traumatology, Brothers Hospitallers Hospital, Markiefki 87 Street, 43-600 Katowice, Poland

    Department of Medical Rehabilitation, Medical University of Silesia, Ziołowa 45/47 Street, 40-635 Katowice, Poland
    Search for articles by this author
  • Alberto Gobbi
    Correspondence
    Corresponding author. Via G.A. Amadeo, 24, Milan 20133, Italy.
    Affiliations
    O.A.S.I. Bioresearch Foundation Gobbi N.P.O, Via G.A. Amadeo, 24, Milan 20133, Italy
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hunter D.J.
        • March L.
        • Chew M.
        Osteoarthritis in 2020 and beyond: a Lancet Commission.
        Lancet [Internet]. 2020; 396: 1711-1712
        • Global Burden of Disease Collaborative Network
        Global Burden of Disease Study 2019 (GBD 2019) results.
        http://ghdx.healthdata.org/gbd-results-tool
        Date: 2020
        Date accessed: December 10, 2021
        • Gobbi A.
        • Lane J.G.
        Bio-orthopaedics: A new approach.
        Springer Nature Switzerland AG, Cham, Switzerland2017: 1-696
        • Chahla J.
        • Stone J.
        • Mandelbaum B.R.
        How to Manage Cartilage Injuries?.
        Arthroscopy-j Arthrosc Relat Surg. 2019; 35: 2771-2773
        • Gobbi A.
        • Karnatzikos G.
        • Kumar A.
        Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1986-1996
        • Steadman J.R.
        • Rodkey W.G.
        • Briggs K.K.
        Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes.
        J Knee Surg. 2002; 15: 170-176
        • Gobbi A.
        • Lane J.G.
        • Dallo I.
        Editorial Commentary: Cartilage Restoration—What Is Currently Available?.
        Arthrosc - J Arthrosc Relat Surg. 2020; 36: 1625-1628
        • Hoemann C.D.
        • Gosselin Y.
        • Chen H.
        • et al.
        Characterization of initial microfracture defects in human condyles.
        J Knee Surg. 2013; 26: 347-355
        • Gobbi A.
        • Herman K.
        • Grabowski R.
        • et al.
        Primary Anterior Cruciate Ligament Repair With Hyaluronic Scaffold and Autogenous Bone Marrow Aspirate Augmentation in Adolescents With Open Physes.
        Arthrosc Tech. 2019; 8: e1561-e1568
        • Mithoefer K.
        • Mcadams T.
        • Williams R.J.
        • et al.
        Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis.
        Am J Sports Med. 2009; 37: 2053-2063
        • Gobbi A.
        • Whyte G.P.
        One-Stage Cartilage Repair Using a Hyaluronic Acid-Based Scaffold with Activated Bone Marrow-Derived Mesenchymal Stem Cells Compared with Microfracture.
        Am J Sports Med. 2016; 44: 2846-2854
        • Frank R.M.
        • Cotter E.J.
        • Nassar I.
        • et al.
        Failure of Bone Marrow Stimulation Techniques.
        Sports Med Arthrosc Rev. 2017; 25: 2-9
        • Behery O.
        • Siston R.A.
        • Harris J.D.
        • et al.
        Treatment of cartilage defects of the knee: Expanding on the existing algorithm.
        Clin J Sport Med. 2014; 24: 21-30
        • Gille J.
        • Behrens P.
        • Volpi P.
        • et al.
        Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: Data of the AMIC Registry.
        Arch Orthop Trauma Surg. 2013; 133: 87-93
        • Salzmann G.M.
        • Baumann G.A.
        • Preiss S.
        Spontaneous Minced Cartilage Procedure for Unexpectedly Large Femoral Condyle Surface Defect.
        Case Rep Orthop. 2016; 2016: 1-3
        • Bonasia D.E.
        • Marmotti A.
        • Rosso F.
        • et al.
        Use of chondral fragments for one stage cartilage repair: A systematic review.
        World J Orthop. 2015; 6: 1006-1011
        • Marmotti A.
        • Bruzzone M.
        • Bonasia D.E.
        • et al.
        One-step osteochondral repair with cartilage fragments in a composite scaffold.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 2590-2601
        • Stone K.R.
        • Pelsis J.R.
        • Na K.
        • et al.
        Articular cartilage paste graft for severe osteochondral lesions of the knee: a 10- to 23-year follow-up study.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 3824-3833
        • Hangody L.
        • Dobos J.
        • Balo E.
        • et al.
        Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study.
        Am J Sports Med. 2010; 38: 1125-1133
        • Wu J.Z.
        • Herzog W.
        • Hasler E.M.
        Inadequate placement of osteochondral plugs may induce abnormal stress-strain distributions in articular cartilage --finite element simulations.
        Med Eng Phys. 2002; 24: 85-97
        • Gobbi A.
        • Lane J.G.
        • Dallo I.
        Editorial Commentary: Cartilage Restoration—What Is Currently Available? Arthrosc.
        J Arthrosc Relat Surg. 2020; 36: 1625-1628
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • et al.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Peterson L.
        • Vasiliadis H.S.
        • Brittberg M.
        • et al.
        Autologous chondrocyte implantation: A long-term follow-up.
        Am J Sports Med. 2010; 38: 1117-1124
        • McCarthy H.S.
        • Roberts S.
        A histological comparison of the repair tissue formed when using either Chondrogide(®) or periosteum during autologous chondrocyte implantation.
        Osteoarthr Cartil. 2013; 21: 2048-2057
        • Niemeyer P.
        • Salzmann G.
        • Feucht M.
        • et al.
        First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: a matched-pair analysis on long-term clinical outcome.
        Int Orthop. 2014; 38: 2065-2070
        • Goyal D.
        • Goyal A.
        • Keyhani S.
        • et al.
        Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies.
        Arthrosc. 2013; 29: 1872-1878
        • Mistry H.
        • Connock M.
        • Pink J.
        • et al.
        Autologous chondrocyte implantation in the knee: systematic review and economic evaluation.
        Health Technol Assess. 2017; 21: V-160
        • Gobbi A.
        • Chaurasia S.
        • Karnatzikos G.
        • et al.
        Matrix-Induced Autologous Chondrocyte Implantation versus Multipotent Stem Cells for the Treatment of Large Patellofemoral Chondral Lesions: A Nonrandomized Prospective Trial.
        Cartilage. 2015; 6: 82-97
        • Chahla J.
        • Sweet M.C.
        • Okoroha K.R.
        • et al.
        Osteochondral Allograft Transplantation in the Patellofemoral Joint: A Systematic Review.
        Am J Sports Med. 2019; 47: 3009-3018
        • Bonasia D.E.
        • Martin J.A.
        • Marmotti A.
        • et al.
        Cocultures of adult and juvenile chondrocytes compared with adult and juvenile chondral fragments: in vitro matrix production.
        Am J Sports Med. 2011; 39: 2355-2361
        • Farr J.
        • Tabet S.K.
        • Margerrison E.
        • et al.
        Clinical, Radiographic, and Histological Outcomes After Cartilage Repair With Particulated Juvenile Articular Cartilage: A 2-Year Prospective Study.
        Am J Sports Med. 2014; 42: 1417-1425
        • Queally J.M.
        • Harris E.
        • Handoll H.H.G.
        • et al.
        Intramedullary nails for extracapsular hip fractures in adults.
        Cochrane Database Syst Rev. 2014; 2014
        • Wang K.C.
        • Frank R.M.
        • Cotter E.J.
        • et al.
        Arthroscopic Management of Isolated Tibial Plateau Defect With Microfracture and Micronized Allogeneic Cartilage-Platelet-Rich Plasma Adjunct.
        Arthrosc Tech. 2017; 6: e1613-e1618
        • Kon E.
        • Di Matteo B.
        • Verdonk P.
        • et al.
        Aragonite-Based Scaffold for the Treatment of Joint Surface Lesions in Mild to Moderate Osteoarthritic Knees: Results of a 2-Year Multicenter Prospective Study.
        Am J Sports Med. 2021; 49: 588-598
        • Gobbi A.
        • Scotti C.
        • Karnatzikos G.
        • et al.
        One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 2494-2501
        • Kon E.
        • Filardo G.
        • Shani J.
        • et al.
        Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: Up to 12-month follow-up study in a goat model.
        J Orthop Surg Res. 2015; 10
        • Gobbi A.
        • Karnatzikos G.
        • Scotti C.
        • et al.
        One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up.
        Cartilage. 2011; 2: 286-299
        • Gobbi A.
        • Karnatzikos G.
        • Sankineani S.R.
        One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee.
        Am J Sports Med. 2014; 42: 648-657
        • Gobbi A.
        • Whyte G.P.
        Long-term Clinical Outcomes of One-Stage Cartilage Repair in the Knee With Hyaluronic Acid–Based Scaffold Embedded With Mesenchymal Stem Cells Sourced From Bone Marrow Aspirate Concentrate.
        Am J Sports Med. 2019; 47: 1621-1628
        • Sadlik B.
        • Gobbi A.
        • Puszkarz M.
        • et al.
        Biologic Inlay Osteochondral Reconstruction: Arthroscopic One-Step Osteochondral Lesion Repair in the Knee Using Morselized Bone Grafting and Hyaluronic Acid-Based Scaffold Embedded With.
        Bone Marrow Aspirate Concentrate. 2017; 6: e383-e389
        • Gobbi A.
        • Alvarez R.
        • Irlandini E.
        • et al.
        Current Concepts in Subchondral Bone Pathology.
        Jt Funct Preserv. 2022; : 173-180
        • Scarpone M.
        • Kuebler D.
        • Chambers A.
        • et al.
        Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation 11 Medical and Health Sciences 1103 Clinical Sciences.
        J Transl Med. 2019; 17: 1-10
        • Gobbi A.
        • Dallo I.
        Osteo-Core-Plasty technique for the treatment of a proximal tibial subchondral cystic lesion.
        • Brozovich A.
        • Sinicrope B.J.
        • Bauza G.
        • et al.
        High Variability of Mesenchymal Stem Cells Obtained via Bone Marrow Aspirate Concentrate Compared With Traditional Bone Marrow Aspiration Technique.
        Orthop J Sports Med. 2021; 9 (23259671211058459)
        • Szwedowski D.
        • Dallo I.
        • Irlandini E.
        • et al.
        Osteo-core Plasty: A Minimally Invasive Approach for Subchondral Bone Marrow Lesions of the Knee.
        Arthrosc Tech. 2020; 9
        • Tang J.Z.
        • Nie M.J.
        • Zhao J.Z.
        • et al.
        Platelet-rich plasma versus hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis.
        J Orthop Surg Res. 2020; 15: 403
        • Asfaha S.
        • Cenac N.
        • Houle S.
        • et al.
        Protease-activated receptor-4: a novel mechanism of inflamma-tory pain modulation.
        Br J Pharmacol. 2007; 150: 176-185
        • Ulrich-Vinther M.
        • Maloney M.D.
        • Schwarz E.M.
        • et al.
        Articular cartilage biology.
        J Am Acad Ort-hop Surg. 2003; 11 (Review): 421-430
        • Sánchez M.
        • Anitua E.
        • Delgado D.
        • et al.
        A new strategy to tackle severe knee osteoarthritis: Combination of intra-articular and intraosseous injections of Platelet Rich Plasma.
        Expert Opin Biol Ther. 2016; 16: 627-643
        • Fortier L.A.
        • Barker J.U.
        • Strauss E.J.
        • et al.
        The role of growth factors in cartilage repair.
        Clin Orthop Relat Res. 2011; 469: 2706-2715
        • Cole B.J.
        • Karas V.
        • Hussey K.
        • et al.
        Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis.
        Am J Sports Med. 2017; 45: 339-346
        • Gobbi A.
        • Lad D.
        • Karnatzikos G.
        The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee.
        Knee Surg Sports Traumatol Arthrosc. 2014; 23: 2170-2177
        • Filardo G.
        • Previtali D.
        • Napoli F.
        • et al.
        PRP Injections for the Treatment of Knee Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials.
        Cartilage. 2021; 13: 364S-375S
        • Belk J.W.
        • Houck D.A.
        • Littlefield C.P.
        • et al.
        Platelet-Rich Plasma Versus Hyaluronic Acid for Hip Osteoarthritis Yields Similarly Beneficial Short-Term Clinical Outcomes: A Systematic Review and Meta-analysis of Level I and II Randomized Controlled Trials.
        Arthroscopy. 2022; 38: 2035-2046
        • Dallari D.
        • Stagni C.
        • Rani N.
        • et al.
        Ultrasound-Guided Injection of Platelet-Rich Plasma and Hyaluronic Acid, Separately and in Combination, for Hip Osteoarthritis: A Randomized Controlled Study.
        Am J Sports Med. 2016; 44: 664-671
        • Di Martino A.
        • Boffa A.
        • Andriolo L.
        • et al.
        Leukocyte-Rich versus Leukocyte-Poor Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Trial.
        Am J Sports Med. 2022; 50: 609-617
        • Abdelsabor Sabaah H.M.
        • El Fattah R.A.
        • Al Zifzaf D.
        • et al.
        A Comparative Study for Different Types of Thumb Base Osteoarthritis Injections: A Randomized Controlled Interventional Study.
        Ortop Traumatol Rehabil. 2020; 22: 447-454
        • Paget L.D.A.
        • Reurink G.
        • de Vos R.J.
        • et al.
        • PRIMA Study Group
        Effect of Platelet-Rich Plasma Injections vs Placebo on Ankle Symptoms and Function in Patients With Ankle Osteoarthritis: A Randomized Clinical Trial.
        JAMA. 2021; 326: 1595-1605
        • Russo A.
        • Screpis D.
        • Di Donato S.L.
        • et al.
        Autologous and micro-fragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis.
        J Exp Orthop. 2017; 4: 33
        • Baria M.
        • Pedroza A.
        • Kaeding C.
        • et al.
        Platelet-Rich Plasma Versus Microfragmented Adipose Tissue for Knee Osteoarthritis: A Randomized Controlled Trial.
        Orthop J Sports Med. 2022; 10https://doi.org/10.1177/23259671221120678
        • Gobbi A.
        • Dallo I.
        • Rogers C.
        • et al.
        Two-year clinical outcomes of autologous microfragmented adipose tissue in elderly patients with knee osteoarthritis: a multi-centric, international study.
        Int Orthop. 2021; 45: 1179-1188
        • Dallo I.
        • Szwedowski D.
        • Mobasheri A.
        • et al.
        A Prospective Study Comparing Leukocyte-Poor Platelet-Rich Plasma Combined with Hyaluronic Acid and Autologous Microfragmented Adipose Tissue in Patients with Early Knee Osteoarthritis.
        Stem Cell Dev. 2021; 30: 651-659