Advertisement

Orthobiologic Techniques for Surgical Augmentation

Published:October 17, 2022DOI:https://doi.org/10.1016/j.pmr.2022.08.015

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Calcei J.G.
        • Rodeo S.A.
        Orthobiologics for bone healing.
        Clin Sports Med. 2019; 38: 79-95
        • Lin K.M.
        • Rodeo S.A.
        Tendon and ligament healing.
        in: RA Orthopaedic basic science. 5th edition. American Academy of Orthopaedic Surgeons, Rosemont (IL)2021: 433-444
        • Galatz L.M.
        • Gerstenfeld L.
        • Heber-Katz E.
        • et al.
        Tendon regeneration and scar formation: the concept of scarless healing.
        J Orthop Res. 2015; 33: 823-831
        • Chahla J.
        • Kennedy M.I.
        • Aman Z.S.
        • et al.
        Ortho-biologics for ligament repair and reconstruction.
        Clin Sports Med. 2019; 38: 97-107
        • Lopa S.
        • Colombini A.
        • Moretti M.
        • et al.
        Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2003-2020
        • Lin K.
        • VandenBerg J.
        • Putnam S.M.
        • et al.
        Bone marrow aspirate concentrate with cancellous allograft versus iliac crest bone graft in the treatment of long bone nonunions.
        OTA Int. 2019; 2: e012
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Liu X.N.
        • Yang C.J.
        • Kim J.E.
        • et al.
        Enhanced tendon-to-bone healing of chronic rotator cuff tears by bone marrow aspirate concentrate in a rabbit model.
        Clin Orthop Surg. 2018; 10: 99-110
        • Lim J.K.
        • Hui J.
        • Li L.
        • et al.
        Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction.
        Arthroscopy. 2004; 20: 899-910
        • Zouzias I.C.
        • Bugbee W.D.
        Osteochondral allograft transplantation in the knee.
        Sports Med Arthrosc Rev. 2016; 24: 79-84
        • Burchardt H.
        The biology of bone graft repair.
        Clin Orthop Relat Res. 1983; : 28-42
        • Cook J.L.
        Editorial commentary: bone marrow aspirate biologics for osteochondral allografts-because we can or because we should?.
        Arthroscopy. 2019; 35: 2445-2447
        • Stoker A.M.
        • Baumann C.A.
        • Stannard J.P.
        • et al.
        Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts.
        J Knee Surg. 2018; 31: 314-320
        • Wang D.
        • Lin K.M.
        • Burge A.J.
        • et al.
        Bone marrow aspirate concentrate does not improve osseous integration of osteochondral allografts for the treatment of chondral defects in the knee at 6 and 12 months: a comparative magnetic resonance imaging analysis.
        Am J Sports Med. 2019; 47: 339-346
        • Ackermann J.
        • Mestriner A.B.
        • Shah N.
        • et al.
        Effect of autogenous bone marrow aspirate treatment on magnetic resonance imaging integration of osteochondral allografts in the knee: a matched comparative imaging analysis.
        Arthroscopy. 2019; 35: 2436-2444
        • Oladeji L.O.
        • Stannard J.P.
        • Cook C.R.
        • et al.
        Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts.
        Am J Sports Med. 2017; 45: 2797-2803
        • Everts P.
        • Onishi K.
        • Jayaram P.
        • et al.
        Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020.
        Int J Mol Sci. 2020; 21: 7794
        • Le A.D.K.
        • Enweze L.
        • DeBaun M.R.
        • et al.
        Current clinical recommendations for use of platelet-rich plasma.
        Curr Rev Musculoskelet Med. 2018; 11: 624-634
        • Chahla J.
        • Kennedy N.I.
        • Geeslin A.G.
        • et al.
        Meniscal repair with fibrin clot augmentation.
        Arthrosc Tech. 2017; 6: e2065-e2069
        • Hashimoto Y.
        • Nishino K.
        • Orita K.
        • et al.
        Biochemical characteristics and clinical result of bone marrow-derived fibrin clot for repair of isolated meniscal injury in the avascular zone.
        Arthroscopy. 2022; 38: 441-449
        • Warth R.J.
        • Shupe P.G.
        • Gao X.
        • et al.
        Fibrin clots maintain the viability and proliferative capacity of human mesenchymal stem cells: an in vitro study.
        Clin Orthop Relat Res. 2020; 478: 653-664
        • Siegel K.R.
        • Clevenger T.N.
        • Clegg D.O.
        • et al.
        Adipose stem cells incorporated in fibrin clot modulate expression of growth factors.
        Arthroscopy. 2018; 34: 581-591
        • Arnoczky S.P.
        • Warren R.F.
        • Spivak J.M.
        Meniscal repair using an exogenous fibrin clot. An experimental study in dogs.
        J Bone Joint Surg Am. 1988; 70: 1209-1217
        • Nakayama H.
        • Kanto R.
        • Kambara S.
        • et al.
        Successful treatment of degenerative medial meniscal tears in well-aligned knees with fibrin clot implantation.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 3466-3473
        • Zaffagnini S.
        • Poggi A.
        • Reale D.
        • et al.
        Biologic augmentation reduces the failure rate of meniscal repair: a systematic review and meta-analysis.
        Orthop J Sports Med. 2021; 9 (2325967120981627)
        • Kamimura T.
        • Kimura M.
        Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases.
        Orthop J Sports Med. 2014; 2 (2325967114555678)
        • Yamanashi Y.
        • Kato T.
        • Akao M.
        • et al.
        Meniscal repair using fibrin clots made from bone marrow blood wrapped in a polyglycolic acid sheet.
        Arthrosc Tech. 2021; 10: e2541-e2546
        • Frank R.M.
        • Cvetanovich G.
        • Savin D.
        • et al.
        Superior capsular reconstruction: indications, techniques, and clinical outcomes.
        JBJS Rev. 2018; 6: e10
        • Badhe S.P.
        • Lawrence T.M.
        • Smith F.D.
        • et al.
        An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears.
        J Shoulder Elbow Surg. 2008; 17: 35s-9s
        • Neumann J.A.
        • Zgonis M.H.
        • Rickert K.D.
        • et al.
        Interposition dermal matrix xenografts: a successful alternative to traditional treatment of massive rotator cuff tears.
        Am J Sports Med. 2017; 45: 1261-1268
        • Nicholson G.P.
        • Breur G.J.
        • Van Sickle D.
        • et al.
        Evaluation of a cross-linked acellular porcine dermal patch for rotator cuff repair augmentation in an ovine model.
        J Shoulder Elbow Surg. 2007; 16: S184-S190
        • EAM C.
        • Huntington L.S.
        • Tulloch S.
        Suture tape augmentation of anterior cruciate ligament reconstruction increases biomechanical stability: a scoping review of biomechanical, animal, and clinical studies.
        Arthroscopy. 2022; 38: 2073-2089
        • Wicks E.D.
        • Stack J.
        • Rezaie N.
        • et al.
        Biomechanical evaluation of suture tape internal brace reinforcement of soft tissue allografts for ACL reconstruction using a porcine model.
        Orthop J Sports Med. 2022; 10 (23259671221091252)
        • Waly A.H.
        • ElShafie H.I.
        • Morsy M.G.
        • et al.
        All-inside anterior cruciate ligament reconstruction with suture tape augmentation: button tie-over technique (BTOT).
        Arthrosc Tech. 2021; 10: e2559-e2570
        • Carr 2nd, J.B.
        • Camp C.L.
        • Dines J.S.
        Elbow ulnar collateral ligament injuries: indications, management, and outcomes.
        Arthroscopy. 2020; 36: 1221-1222
        • Dugas J.R.
        • Looze C.A.
        • Capogna B.
        • et al.
        Ulnar collateral ligament repair with collagen-dipped fibertape augmentation in overhead-throwing athletes.
        Am J Sports Med. 2019; 47: 1096-1102
        • Urch E.
        • Limpisvasti O.
        • ElAttrache N.S.
        • et al.
        Biomechanical evaluation of a modified internal brace construct for the treatment of ulnar collateral ligament injuries.
        Orthop J Sports Med. 2019; 7 (2325967119874135)
        • Roth T.S.
        • Beason D.P.
        • Clay T.B.
        • et al.
        The effect of ulnar collateral ligament repair with internal brace augmentation on articular contact mechanics: a cadaveric study.
        Orthop J Sports Med. 2021; 9 (23259671211001069)
        • Bodendorfer B.M.
        • Looney A.M.
        • Lipkin S.L.
        • et al.
        Biomechanical comparison of ulnar collateral ligament reconstruction with the docking technique versus repair with internal bracing.
        Am J Sports Med. 2018; 46: 3495-3501
        • Heusdens C.H.W.
        • Blockhuys K.
        • Roelant E.
        • et al.
        Suture tape augmentation ACL repair, stable knee, and favorable PROMs, but a re-rupture rate of 11% within 2 years.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 3706-3714
        • Black A.K.
        • Schlepp C.
        • Zapf M.
        • et al.
        Technique for arthroscopically assisted superficial and deep medial collateral ligament-meniscotibial ligament repair with internal brace augmentation.
        Arthrosc Tech. 2018; 7: e1215-e1219
        • van Eck C.F.
        • Nakamura T.
        • Price T.
        • et al.
        Suture tape augmentation improves laxity of MCL repair in the ACL reconstructed knee.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 2545-2552
        • Lai V.J.
        • Reynolds A.W.
        • Kindya M.
        • et al.
        The use of suture augmentation for graft protection in acl reconstruction: a biomechanical study in porcine knees.
        Arthrosc Sports Med Rehabil. 2021; 3: e57-e63
        • Cook J.L.
        • Smith P.
        • Stannard J.P.
        • et al.
        A canine arthroscopic anterior cruciate ligament reconstruction model for study of synthetic augmentation of tendon allografts.
        J Knee Surg. 2017; 30: 704-711
        • Hopper G.P.
        • Heusdens C.H.W.
        • Dossche L.
        • et al.
        Medial patellofemoral ligament repair with suture tape augmentation.
        Arthrosc Tech. 2019; 8: e1-e5
        • Mercer N.
        • Kanakamedala A.
        • Azam M.
        • et al.
        Clinical outcomes after suture tape augmentation for ankle instability: a systematic review.
        Orthopaedic J Sports Med. 2022; 10 (232596712210957)
        • Esenyel C.
        • Demirhan M.
        • Kilicoglu O.
        • et al.
        Evaluation of soft tissue reactions to three nonabsorbable suture materials in a rabbit model.
        Acta Orthop Traumatol Turc. 2009; 43: 366-372