Advertisement

Orthobiologic Interventions for Muscle Injuries

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fernandez W.G.
        • Yard E.E.
        • Comstock R.D.
        Epidemiology of lower extremity injuries among US high school athletes.
        Acad Emerg Med. 2007; 14: 641-645
        • Ekstrand J.
        • Hägglund M.
        • Waldén M.
        Epidemiology of muscle injuries in professional football (soccer).
        Am J Sports Med. 2011; 39: 1226-1232
        • Chan O.
        • Del Buono A.
        • Best T.M.
        • et al.
        Acute muscle strain injuries: a proposed new classification system.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 2356-2362
        • Järvinen M.J.
        • Lehto M.U.
        The effects of early mobilisation and immobilisation on the healing process following muscle injuries.
        Sports Med. 1993; 15: 78-89
        • Järvinen T.A.
        • Järvinen M.
        • Kalimo H.
        Regeneration of injured skeletal muscle after the injury.
        Muscles Ligaments Tendons J. 2013; 3: 337-345
        • Kalimo H.
        • Rantanen J.
        • Järvinen M.
        Muscle injuries in sports.
        Bailliere's Clin Orthopaedics. 1996; 2: 1-24
        • Kujala U.M.
        • Orava S.
        • Järvinen M.
        Hamstring injuries.
        Sports Med. 1997; 23: 397-404
        • Ekstrand J.
        Keeping your top players on the pitch: the key to football medicine at a professional level.
        Br J Sports Med. 2013; 47: 723-724
        • Exeter D.
        • Connell D.A.
        Skeletal muscle: functional anatomy and pathophysiology.
        Semin Musculoskelet Radiol. 2010; 14: 97-105
        • Frontera W.R.
        • Ochala J.
        Skeletal muscle: a brief review of structure and function.
        Calcif Tissue Int. 2015; 96: 183-195
        • Deschenes M.R.
        • Covault J.
        • Kraemer W.J.
        • et al.
        The neuromuscular junction.
        Sports Med. 1994; 17: 358-372
        • Mueller-Wohlfahrt H.-W.
        • Haensel L.
        • Mithoefer K.
        • et al.
        Terminology and classification of muscle injuries in sport: the Munich consensus statement.
        Br J Sports Med. 2013; 47: 342-350
        • Pollock N.
        • James S.L.
        • Lee J.C.
        • et al.
        British athletics muscle injury classification: a new grading system.
        Br J Sports Med. 2014; 48: 1347-1351
        • Camp C.L.
        • Dines J.S.
        • van der List J.P.
        • et al.
        Summative report on time out of play for major and minor league baseball: an analysis of 49,955 injuries from 2011 through 2016.
        Am J Sports Med. 2018; 46: 1727-1732
        • Rodas G.
        • Bove T.
        • Caparrós T.
        • et al.
        Ankle sprain versus muscle strain injury in professional men’s basketball: a 9-year prospective follow-up study.
        Orthop J Sports Med. 2019; 7 (2325967119849035)
        • Grazier K.
        The frequency of occurrence, impact, cost of selected musculoskeletal conditions in the United States.
        Am Acad Orthop Surgeon. 1984; 1: 73-75
        • Anderson G.R.
        • Melugin H.P.
        • Stuart M.J.
        Epidemiology of injuries in ice hockey.
        Sports Health. 2019; 11: 514-519
        • Gentile N.E.
        • Stearns K.M.
        • Brown E.H.
        • et al.
        Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss.
        Am J Phys Med Rehabil. 2014; 93: S79-S87
        • Rando T.A.
        • Ambrosio F.
        Regenerative rehabilitation: applied biophysics meets stem cell therapeutics.
        Cell Stem Cell. 2018; 22: 306-309
        • O'Donoghue D.H.
        Introduction. Treatment of injuries to athletes. 1962.
        Clin Orthop Relat Res. 2002; : 3-8
        • Patel A.
        • Chakraverty J.
        • Pollock N.
        • et al.
        British athletics muscle injury classification: a reliability study for a new grading system.
        Clin Radiol. 2015; 70: 1414-1420
        • Wangensteen A.
        • Tol J.L.
        • Roemer F.W.
        • et al.
        Intra-and interrater reliability of three different MRI grading and classification systems after acute hamstring injuries.
        Eur J Radiol. 2017; 89: 182-190
        • Sassoli C.
        • Vallone L.
        • Tani A.
        • et al.
        Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.
        Cell Tissue Res. 2018; 372: 549-570
        • Järvinen T.A.
        • Järvinen T.L.
        • Kääriäinen M.
        • et al.
        Muscle injuries: biology and treatment.
        Am J Sports Med. 2005; 33: 745-764
        • Gedney E.
        Hypermobile joint: a preliminary report.
        Osteopath Prof. 1937; 4: 30-31
        • Liu Y.K.
        • Tipton C.M.
        • Matches R.D.
        • et al.
        An in situ study of a Sclerosing solution in rabbit medial collateral ligaments and its junction strength.
        Connect Tissue Res. 1983; 11: 95-102
        • Burling F.
        Comparison of tetradecyl sulfate versus polidocanol injections for stabilisation of joints that regularly dislocate in an Ehlers-Danlos population.
        BMJ Open Sport Exerc Med. 2019; 5: e000481
        • Tsai S.-W.
        • Hsu Y.-J.
        • Lee M.-C.
        • et al.
        Effects of dextrose prolotherapy on contusion-induced muscle injuries in mice.
        Int J Med Sci. 2018; 15: 1251
        • Dunn A.
        • Talovic M.
        • Patel K.
        • et al.
        Biomaterial and stem cell-based strategies for skeletal muscle regeneration.
        J Orthop Res. 2019; 37: 1246-1262
        • von Roth P.
        • Duda G.N.
        • Radojewski P.
        • et al.
        Intra-arterial MSC transplantation restores functional capacity after skeletal muscle trauma.
        Open Orthop J. 2012; 6: 352-356
        • Chiu C.H.
        • Chang T.H.
        • Chang S.S.
        • et al.
        Application of bone marrow-derived mesenchymal stem cells for muscle healing after contusion injury in mice.
        Am J Sports Med. 2020; 48: 1226-1235
        • Everts P.
        • Onishi K.
        • Jayaram P.
        • et al.
        Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020.
        Int J Mol Sci. 2020; : 21
        • Scully D.
        • Matsakas A.
        Current insights into the potential misuse of platelet-based applications for doping in sports.
        Int J Sports Med. 2019; 40: 427-433
        • Andrade B.M.
        • Baldanza M.R.
        • Ribeiro K.C.
        • et al.
        Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.
        PLoS One. 2015; 10: e0127561
        • Tsuji W.
        • Rubin J.P.
        • Marra K.G.
        Adipose-derived stem cells: implications in tissue regeneration.
        World J Stem Cells. 2014; 6: 312-321
        • Mizuno H.
        • Zuk P.A.
        • Zhu M.
        • et al.
        Myogenic differentiation by human processed lipoaspirate cells.
        Plast Reconstr Surg. 2002; 109 ([discussion: 10-1]): 199-209
        • Yu D.
        • Cai Z.
        • Li D.
        • et al.
        Myogenic differentiation of stem cells for skeletal muscle regeneration.
        Stem Cells Int. 2021; 2021: 8884283
        • Pinheiro C.H.
        • de Queiroz J.C.
        • Guimarães-Ferreira L.
        • et al.
        Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle.
        Stem Cell Rev Rep. 2012; 8: 363-374
        • Lee E.M.
        • Kim A.Y.
        • Lee E.J.
        • et al.
        Therapeutic effects of mouse adipose-derived stem cells and losartan in the skeletal muscle of injured mdx mice.
        Cell Transplant. 2015; 24: 939-953
        • Wexler S.A.
        • Donaldson C.
        • Denning-Kendall P.
        • et al.
        Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not.
        Br J Haematol. 2003; 121: 368-374
        • Amati E.
        • Sella S.
        • Perbellini O.
        • et al.
        Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use.
        Stem Cell Res Ther. 2017; 8: 14
        • Mishra S.
        • Sevak J.K.
        • Das A.
        • et al.
        Umbilical cord tissue is a robust source for mesenchymal stem cells with enhanced myogenic differentiation potential compared to cord blood.
        Sci Rep. 2020; 10: 1-12
        • Taghizadeh R.
        • Cetrulo K.
        • Cetrulo C.
        Wharton’s Jelly stem cells: future clinical applications.
        Placenta. 2011; 32: S311-S315
        • Conconi M.T.
        • Burra P.
        • Di Liddo R.
        • et al.
        CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential.
        Int J Mol Med. 2006; 18: 1089-1096
        • Su W.-H.
        • Wang C.-J.
        • Fu H.-C.
        • et al.
        Human umbilical cord mesenchymal stem cells extricate bupivacaine-impaired skeletal muscle function via mitigating neutrophil-mediated acute inflammation and protecting against fibrosis.
        Int J Mol Sci. 2019; 20: 4312
        • Barlow S.
        • Brooke G.
        • Chatterjee K.
        • et al.
        Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells.
        Stem Cells Dev. 2008; 17: 1095-1107
        • Magatti M.
        • Vertua E.
        • Cargnoni A.
        • et al.
        The immunomodulatory properties of amniotic cells: the two sides of the coin.
        Cell Transpl. 2018; 27: 31-44
        • Winkler T.
        • Perka C.
        • von Roth P.
        • et al.
        Immunomodulatory placental-expanded, mesenchymal stromal cells improve muscle function following hip arthroplasty.
        J Cachexia Sarcopenia Muscle. 2018; 9: 880-897
        • Cruciani M.
        • Franchini M.
        • Mengoli C.
        • et al.
        Platelet-rich plasma for sports-related muscle, tendon and ligament injuries: an umbrella review.
        Blood Transfus. 2019; 17: 465-478
        • Mautner K.
        • Malanga G.A.
        • Smith J.
        • et al.
        A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature.
        PM&R. 2015; 7: S53-S59
        • Miroshnychenko O.
        • Chang W-t
        • Dragoo J.L.
        The use of platelet-rich and platelet-poor plasma to enhance differentiation of skeletal myoblasts: implications for the use of autologous blood products for muscle regeneration.
        Am J Sports Med. 2017; 45: 945-953
        • Chahla J.
        • Cinque M.E.
        • Piuzzi N.S.
        • et al.
        A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature.
        J Bone Joint Surg Am. 2017; 99: 1769-1779
        • Le A.D.
        • Enweze L.
        • DeBaun M.R.
        • et al.
        Platelet-rich plasma.
        Clin Sports Med. 2019; 38: 17-44
        • Rossi L.
        • Murray I.
        • Chu C.
        • et al.
        Classification systems for platelet-rich plasma.
        Bone Joint J. 2019; 101: 891-896
        • Denapoli P.M.A.
        • Stilhano R.S.
        • Ingham S.J.M.
        • et al.
        Platelet-rich plasma in a murine model: leukocytes, growth factors, Flt-1, and muscle healing.
        Am J Sports Med. 2016; 44: 1962-1971
        • Martins R.P.
        • Hartmann D.D.
        • de Moraes J.P.
        • et al.
        Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats.
        Platelets. 2016; 27: 784-790
        • Terada S.
        • Ota S.
        • Kobayashi M.
        • et al.
        Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury.
        J Bone Joint Surg Am. 2013; 95: 980-988
        • Bubnov R.
        • Yevseenko V.
        • Semeniv I.
        Ultrasound guided injections of platelets rich plasma for muscle injury in professional athletes. Comparative study.
        Med Ultrason. 2013; 15: 101-105
        • Hamilton B.
        • Tol J.L.
        • Almusa E.
        • et al.
        Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial.
        Br J Sports Med. 2015; 49: 943-950
        • Martinez-Zapata M.J.
        • Orozco L.
        • Balius R.
        • et al.
        Efficacy of autologous platelet-rich plasma for the treatment of muscle rupture with haematoma: a multicentre, randomised, double-blind, placebo-controlled clinical trial.
        Blood Transfus. 2016; 14: 245-254
        • Hamid M.S.A.
        • Mohamed Ali M.R.
        • Yusof A.
        • et al.
        Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial.
        Am J Sports Med. 2014; 42: 2410-2418
        • Reurink G.
        • Goudswaard G.J.
        • Moen M.H.
        • et al.
        Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study.
        Br J Sports Med. 2015; 49: 1206-1212
        • Reurink G.
        • Goudswaard G.J.
        • Moen M.H.
        • et al.
        Myotoxicity of injections for acute muscle injuries: a systematic review.
        Sports Med. 2014; 44: 943-956
        • Bezuglov E.
        • Maffulli N.
        • Tokareva A.
        • et al.
        Platelet-rich plasma in hamstring muscle injuries in professional soccer players: a pilot study.
        Muscles Ligaments Tendons J. 2019; 9: 112-118
        • Guillodo Y.
        • Madouas G.
        • Simon T.
        • et al.
        Platelet-rich plasma (PRP) treatment of sports-related severe acute hamstring injuries.
        Muscles Ligaments Tendons J. 2015; 5: 284-288
        • Rettig A.C.
        • Meyer S.
        • Bhadra A.K.
        Platelet-rich plasma in addition to rehabilitation for acute hamstring injuries in NFL players: clinical effects and time to return to play.
        Orthop J Sports Med. 2013; 1 (2325967113494354)
        • Zanon G.
        • Combi F.
        • Combi A.
        • et al.
        Platelet-rich plasma in the treatment of acute hamstring injuries in professional football players.
        Joints. 2016; 4: 17-23
        • Güleçyüz M.F.
        • Macha K.
        • Pietschmann M.F.
        • et al.
        Allogenic myocytes and mesenchymal stem cells partially improve fatty rotator cuff degeneration in a rat model.
        Stem Cell Rev Rep. 2018; 14: 847-859
        • Takase F.
        • Inui A.
        • Mifune Y.
        • et al.
        Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: in vitro and in vivo evaluations.
        J Orthop Res. 2017; 35: 1806-1815
        • Hotfiel T.
        • Seil R.
        • Bily W.
        • et al.
        Nonoperative treatment of muscle injuries-recommendations from the GOTS expert meeting.
        J Exp Orthop. 2018; 5: 1-11
        • Sciorati C.
        • Rigamonti E.
        • Manfredi A.A.
        • et al.
        Cell death, clearance and immunity in the skeletal muscle.
        Cell Death Differ. 2016; 23: 927-937
        • Peetrons P.
        Ultrasound of muscles.
        Eur Radiol. 2002; 12: 35-43
        • Trunz L.M.
        • Landy J.E.
        • Dodson C.C.
        • et al.
        Effectiveness of hematoma aspiration and platelet-rich plasma muscle injections for the treatment of hamstring strains in athletes.
        Med Sci Sports Exerc. 2022; 54: 12-17
        • Ling X.
        • Ma X.
        • Kuang X.
        • et al.
        Lidocaine inhibits myoblast cell migration and myogenic differentiation through activation of the notch pathway.
        Drug Des Devel Ther. 2021; 15: 927-936
        • Bedi A.
        • Trinh T.Q.
        • Olszewski A.M.
        • et al.
        Nonbiologic injections in sports medicine.
        JBJS Rev. 2020; 8: e0052
        • Ljungqvist A.
        • Schwellnus M.P.
        • Bachl N.
        • et al.
        International Olympic Committee consensus statement: molecular basis of connective tissue and muscle injuries in sport.
        Clin Sports Med. 2008; 27 (x-xi): 231-239
        • Engebretsen L.
        • Steffen K.
        • Alsousou J.
        • et al.
        IOC consensus paper on the use of platelet-rich plasma in sports medicine.
        Br J Sports Med. 2010; 44: 1072-1081
        • Cole B.J.
        • Gilat R.
        • DiFiori J.
        • et al.
        The 2020 NBA orthobiologics consensus statement.
        Orthop J Sports Med. 2021; 9 (23259671211002296)
        • Finnoff J.T.
        • Awan T.M.
        • Borg-Stein J.
        • et al.
        American Medical Society for sports medicine position statement: principles for the responsible use of regenerative medicine in sports medicine.
        Clin J Sport Med. 2021; 31: 530-541
        • Rodeo S.A.
        • Bedi A.
        2019-2020 NFL and NFL physician society orthobiologics consensus statement.
        Sports Health. 2020; 12: 58-60