Advertisement
Review Article| Volume 34, ISSUE 1, P49-61, February 2023

Basic Science of Allograft Orthobiologics

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bottai
        • et al.
        Third Trimester Amniotic Fluid Cells with the Capacity to Develop Nerual Phenotypes and with Heterogenicity among sub-populations.
        Restor Neurol Neurosci. 2012; 30: 55-68
        • Pierce
        • et al.
        Collection and characterization of amniotic fluid from scheduled C-section deliverie.
        Cell Tissue Bank. 2016; 17: 413-425
        • Zia S.
        • et al.
        Routine Clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications.
        Prenat Diagn. 2013; 33: 921-928
        • Panero A.J.
        • Hirahara A.M.
        • Andersen W.J.
        • et al.
        Are Amniotic Fluid Products Stem Cell Therapies? A Study of Amniotic Fluid Preparations for Mesenchymal Stem Cells With Bone Marrow.
        Am J Sports Med. 2019; 47: 1230-1235
        • Kern S.
        • Eichler H.
        • Stoeve J.
        • et al.
        Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.
        Stem Cells. 2006; 24: 1294-1301
        • Montesinos J.J.
        • Flores-Figueroa E.
        • Castillo-Medina S.
        • et al.
        Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression.
        Cytotherapy. 2009; 11: 163-176
        • Moretti P.
        • Hatlapatka T.
        • Marten D.
        • et al.
        Mesenchymal stromal cells derived from human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications.
        Adv Biochem Eng Biotechnol. 2010; 123: 29-54
        • Secunda R.
        • Vennila R.
        • Mohanashankar A.M.
        • et al.
        Isolation, expansion and characterization of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study.
        Cytotechnology. 2015; 67: 793-807
        • Zeddou M.
        • Briquet A.
        • Relic B.
        • et al.
        The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.
        Cell Biol Int. 2010; 34: 693-701
        • Rebelatto C.K.
        • Aguiar A.M.
        • Moretao M.P.
        • et al.
        Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.
        Exp Biol Med (Maywood). 2008; 233: 901-913
        • Lu L.L.
        • Liu Y.J.
        • Yang S.G.
        • et al.
        Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials.
        Haematologica. 2006; 91: 1017-1026
        • La Rocca G.
        • Anzalone R.
        • Corrao S.
        • et al.
        Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers.
        Histochem Cell Biol. 2009; 131: 267-282
        • Weiss M.L.
        • Medicetty S.
        • Bledsoe A.R.
        • et al.
        Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease.
        Stem Cells. 2006; 24: 781-792
        • Baksh D.
        • Song L.
        • Tuan R.S.
        Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy.
        J Cell Mol Med. 2004; 8: 301-316
        • Baksh D.
        • Yao R.
        • Tuan R.S.
        Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow.
        Stem Cells. 2007; 25: 1384-1392
        • Chen M.Y.
        • Lie P.C.
        • Li Z.L.
        • et al.
        Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells.
        Exp Hematol. 2009; 37: 629-640
        • Kim M.J.
        • Shin K.S.
        • Jeon J.H.
        • et al.
        Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.
        Cell Tissue Res. 2011; 346: 53-64
        • Finkemeier C.G.
        Bone-grafting and bone-graft substitutes.
        J Bone Joint Surg Am. 2002; 84: 454-464
        • Zhang H.
        • Yang L.
        • Yang X.G.
        • et al.
        Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview.
        Orthop Surg. 2019; 11: 725-737
        • Campana V.
        • Milano G.
        • Pagano E.
        • et al.
        Bone substitutes in orthopaedic surgery: from basic science to clinical practice.
        J Mater Sci Mater Med. 2014; 25: 2445-2461
        • Gruskin E.
        • Doll B.A.
        • Futrell F.W.
        • et al.
        Demineralized bone matrix in bone repair: history and use.
        Adv Drug Deliv Rev. 2012; 64: 1063-1077
        • Urist M.R.
        • Dowell T.A.
        Inductive substratum for osteogenesis in pellets of particulate bone matrix.
        Clin Orthop Relat Res. 1968; 61: 61-78
      1. Senn on the Healing of Aseptic Bone Cavities by Implantation of Antiseptic Decalcified Bone.
        Ann Surg. 1889; 10: 352-368
        • Martin Fernandez L.
        Characteristics, Properties, and Functionality of Fetal Membranes: An Overlooked Area in the Field of Parturition. Encyclopedia of Reproduction.
        2nd Edition. Elsevier, 2018
        • Strauss 3rd, J.F.
        Extracellular matrix dynamics and fetal membrane rupture.
        Reprod Sci. 2013; 20: 140-153
        • Hanselman A.E.
        • Lalli T.A.
        • Santrock R.D.
        Topical Review: Use of Fetal Tissue in Foot and Ankle Surgery.
        Foot Ankle Spec. 2015; 8: 297-304
        • Ferguson V.L.
        • Dodson R.B.
        Bioengineering aspects of the umbilical cord.
        Eur J Obstet Gynecol Reprod Biol. 2009; 144: S108-S113
        • Taghizadeh R.R.
        • Cetrulo K.J.
        • Cetrulo C.L.
        Wharton's Jelly stem cells: future clinical applications.
        Placenta. 2011; 32: S311-S315
        • Sobolewski K.
        • Małkowski A.
        • Bańkowski E.
        • et al.
        Wharton's jelly as a reservoir of peptide growth factors.
        Placenta. 2005; 26: 747-752
        • Ang J.
        • Liou C.D.
        • Schneider H.P.
        The Role of Placental Membrane Allografts in the Surgical Treatment of Tendinopathies.
        Clin Podiatr Med Surg. 2018; 35: 311-321
        • Riboh J.C.
        • Saltzman B.M.
        • Yanke A.B.
        • et al.
        Human Amniotic Membrane-Derived Products in Sports Medicine: Basic Science, Early Results, and Potential Clinical Applications.
        Am J Sports Med Sep. 2016; 44: 2425-2434
        • Leal-Marin S.
        • Kern T.
        • Hofmann N.
        • et al.
        Human Amniotic Membrane: A review on tissue engineering, application, and storage.
        J Biomed Mater Res B Appl Biomater. 2021; 109: 1198-1215
        • Kesting M.R.
        • Wolff K.D.
        • Hohlweg-Majert B.
        • et al.
        The role of allogenic amniotic membrane in burn treatment.
        J Burn Care Res. 2008; 29: 907-916
        • Food, Drug Administration H.H.S.
        Current good tissue practice for human cell, tissue, and cellular and tissue-based product establishments; inspection and enforcement. Final rule.
        Fed Regist. 2004; 69: 68611-68688
        • Huddleston H.P.
        • Cohn M.R.
        • Haunschild E.D.
        • et al.
        Amniotic Product Treatments: Clinical and Basic Science Evidence.
        Curr Rev Musculoskelet Med. 2020; 13: 148-154
        • Rodriguez-Ares M.T.
        • Lopez-Valladares M.J.
        • Tourino R.
        • et al.
        Effects of lyophilization on human amniotic membrane.
        Acta Ophthalmol. 2009; 87: 396-403
        • Nakamura T.
        • Yoshitani M.
        • Rigby H.
        • et al.
        Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction.
        Invest Ophthalmol Vis Sci. 2004; 45: 93-99
        • Liu C.
        • Bai J.
        • Yu K.
        • et al.
        Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial.
        Biomed Res Int. 2019; 2019: 2354325
        • Koob T.J.
        • Rennert R.
        • Zabek N.
        • et al.
        Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.
        Int Wound J. 2013; 10: 493-500
        • Koob T.J.
        • Lim J.J.
        • Massee M.
        • et al.
        Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration.
        Vasc Cell. 2014; 6: 10
        • Gaspar M.P.
        • Abdelfattah H.M.
        • Welch I.W.
        • et al.
        Recurrent cubital tunnel syndrome treated with revision neurolysis and amniotic membrane nerve wrapping.
        J Shoulder Elbow Surg. 2016; 25: 2057-2065
        • Altman R.D.
        • Manjoo A.
        • Fierlinger A.
        • et al.
        The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review.
        BMC Musculoskelet Disord. 2015; 16: 321
        • Panero A.J.
        • Hirahara A.M.
        • Andersen W.J.
        • et al.
        Are Amniotic Fluid Products Stem Cell Therapies? A Study of Amniotic Fluid Preparations for Mesenchymal Stem Cells With Bone Marrow Comparison.
        Am J Sports Med. 2019; 47: 1230-1235
        • Becktell L.
        • Matuska A.M.
        • Hon S.
        • et al.
        Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid-Derived Products.
        Cartilage. 2021; 13: 495S-507S
        • Niknejad H.
        • Deihim T.
        • Solati-Hashjin M.
        • et al.
        The effects of preservation procedures on amniotic membrane's ability to serve as a substrate for cultivation of endothelial cells.
        Cryobiology. 2011; 63: 145-151
        • Connolly J.F.
        Injectable bone marrow preparations to stimulate osteogenic repair.
        Clin Orthop Relat Res. 1995; 313: 8-18
      2. U.S. National Library of Medicine. 2022.
        • US Department of Health and Human Services, Food and Drug Administration
        Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use.
        (Available at:)
        • Panero A.J.
        • et al.
        Allograft Tissues (pp 89-101).
        in: Williams C. Sussman W. Pitts J. Atlas of interventional orthopedics procedures. Elsevier, United States2022
        • Zelen C.M.
        • Poka A.
        • Andrews J.
        Prospective, randomized, blinded, comparative study of injectable micronized dehydrated amniotic/chorionic membrane allograft for plantar fasciitis-a feasibility study.
        Foot Ankle Int. 2013; 34: 1332-1339
        • Cazzell S.
        • Stewart J.
        • Agnew P.S.
        • et al.
        Randomized Controlled Trial of Micronized Dehydrated Human Amnion/Chorion Membrane (dHACM) Injection Compared to Placebo for the Treatment of Plantar Fasciitis.
        Foot Ankle Int. 2018; 39: 1151-1161
        • Hanselman A.E.
        • Tidwell J.E.
        • Santrock R.D.
        Cryopreserved human amniotic membrane injection for plantar fasciitis: a randomized, controlled, double-blind pilot study.
        Foot Ankle Int. 2015; 36: 151-158
        • Main B.J.
        • Maffulli N.
        • Valk J.A.
        • et al.
        Umbilical Cord-Derived Wharton's Jelly for Regenerative Medicine Applications: A Systematic Review.
        Pharmaceuticals (Basel). 2021; 14
        • Raposo G.
        • Stoorvogel W.
        Extracellular Vesicles: Exososomes, microvesicles, and friends.
        J Cell Biol. 2013; 200: 373-383
        • Hristove M.
        • Erl W.
        • Linder S.
        • et al.
        Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro.
        Blood. 2004; 104: 2761-2766
        • György B.
        • Szabó T.G.
        • Pásztói M.
        • et al.
        Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.
        Cell. Mol. Life Sci. 2011; 68: 2667-2688
        • Doyle L.
        Wang M Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis.
        Cells. 2019; 8: 727
        • Valadi H.
        Exosome-mediated transfer of mRNAs and microRNA is a novel mechanism of genetic exchange between cells.
        Nat Cell Biol. 2007; 9: 654-659
        • Maas S.
        • Breakenfield X.
        • Weaver A.
        Extracellular Vesicles: Unique Intercellular Delivery Vehicles.
        Trends Cell Biol. 2017; 27: 172-188
        • Batrakova E.
        • Kim M.S.
        Using exosomes, naturally-equipped nanocarriers, for drug delivery.
        J Controlled Release. 2015; 219: 396-405
        • Borges F.T.
        • Melo S.A.
        • Özdemir B.C.
        • et al.
        TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis.
        J Am Soc Nephrol. 2013; 24: 385-392
        • Rabinowits G.
        • Gercel-Taylor C.
        • Day J.M.
        • et al.
        Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer.
        Clin Lung Cancer. 2009; 10: 42-46
        • Akers J.C.
        • Ramakrishnan V.
        • Kim R.
        • et al.
        miR-21 in the extracellular vesicles (EVs) of Cerebrospinal Fluid (CSF): A Platform for Glioblastoma Biomarker Development.
        PLoS ONE. 2013; 8: e78115
        • Heijnen H.
        • et al.
        Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived From Exocytosis of Multivesicular Bodies and alpha Granules.
        Blood. 1999; 94: 3791-3799
        • Wei K.
        • et al.
        Platelet-Derived Exosomes and Atherothrombosis.
        Front Cardiovasc Med. 2022; 9: 886132
        • Koupenova M.
        • Clancy L.
        • Corkrey H.A.
        • et al.
        Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis.
        Circ Res. 2018; 122: 337-351
        • Rui S.
        • et al.
        Comparison and Investigation of Exosomes Derived from Platelet Rich Plasma Activated by Different Agonist.
        Cell Transplantation. 2021; 30: 1-13
        • Milioli M.
        • Ib'an˜ez-Vea M.
        • Sidoli S.
        • et al.
        Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists.
        J Proteomics. 2015; 121: 56-66
        • Lyu H.
        • Guo Q.
        • Huang Y.
        • et al.
        The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases.
        Front Cell Developmental Biol. 2020; 8: 89
        • Fazaeli H.
        • et al.
        A Comparative Study on the Effect of Exosomes Secreted by Mesenchymal Stem Cells Derived from Adipose and Bone Marrow Tissues in the Treatment of Osteoarthritis-Induced Mouse Model.
        Biomed Res Int Voume. 2021; 2021: 9688138
        • Muller L.
        • Hong C.-S.
        • Stolz D.B.
        • et al.
        Isolation of Biologically-Active Exosomes from Human Plasma.
        J Immunol Methods. 2014; 411: 55-65
        • Livshits M.A.
        • Khomyakova E.
        • Evtushenko E.G.
        • et al.
        Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol.
        Sci Rep. 2015; 5: 17319
        • Vlassov A.V.
        • Zeringer E.
        • Barta T.
        • et al.
        Strategies for Isolation of Exosomes.
        Cold Spring Harb Protoc. 2015; 2015: 319-323
        • Beall D.
        • et al.
        VAST Clinical Trial : Safely Supplementing Tissue Lost to Degenerative Disc Disease.
        Int J Spine Surg. 2020; 14: 239-253