Advertisement

Environmental Medicine

Exploring the Pollutome for Solutions to Chronic Diseases

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pellizzari E.D.
        • Woodruff T.J.
        • Boyles R.R.
        • et al.
        Environmental influences on Child Health Outcomes). Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research.
        Environ Health Perspect. 2019; 127 (2019 Dec 18. Erratum in: Environ Health Perspect. 2020 Jan;128(1):19002. Erratum in: Environ Health Perspect. 2021 Apr;129(4):49001.): 126001
        • Landrigan P.J.
        • Fuller R.
        • Acosta N.J.R.
        • et al.
        The Lancet Commission on pollution and health.
        Lancet. 2018; 391 (Erratum in: Lancet. 2018 Feb 3;391(10119):430. PMID: 29056410): 462-512
        • Grova N.
        • Schroeder H.
        • Olivier J.L.
        • et al.
        Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants.
        Int J Genomics. 2019; 2019: 2085496https://doi.org/10.1155/2019/2085496
        • Bellinger D.C.
        Prenatal Exposures to Environmental Chemicals and Children's Neurodevelopment: An Update.
        Saf Health Work. 2013; 4: 1-11
        • Reuben A.
        • Schaefer J.D.
        • Moffitt T.E.
        • et al.
        Association of Childhood Lead Exposure With Adult Personality Traits and Lifelong Mental Health.
        JAMA Psychiatry. 2019; 76: 418-425
        • Gore A.C.
        • Chappell V.A.
        • Fenton S.E.
        • et al.
        EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.
        Endocr Rev. 2015; 36: E1-E150
        • Rolle-Kampczyk U.
        • Gebauer S.
        • Haange S.B.
        • et al.
        Accumulation of distinct persistent organic pollutants is associated with adipose tissue inflammation.
        Sci Total Environ. 2020; 748: 142458https://doi.org/10.1016/j.scitotenv.2020.142458
        • Kahn L.G.
        • Philippat C.
        • Nakayama S.F.
        • et al.
        Endocrine-disrupting chemicals: implications for human health.
        Lancet Diabetes Endocrinol. 2020; 8: 703-718
        • Trasande L.
        • Zoeller R.T.
        • Hass U.
        • et al.
        Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union.
        J Clin Endocrinol Metab. 2015; 100: 1245-1255
        • Gupta R.
        • Kumar P.
        • Fahmi N.
        • et al.
        Endocrine disruption and obesity: A current review on environmental obesogens.
        Curr Res Green Sustainable Chem. 2020; 3: 100009https://doi.org/10.1016/j.crgsc.2020.06.002
        • Misra B.B.
        • Misra A.
        The chemical exposome of type 2 diabetes mellitus: Opportunities and challenges in the omics era.
        Diabetes Metab Syndr. 2020; 14: 23-38
        • Patrick L.
        Diabetes and Toxicant Exposure.
        Integr Med (Encinitas). 2020; 19: 16-23
        • Cannon A.
        • Handelsman Y.
        • Heile M.
        • et al.
        Burden of Illness in Type 2 Diabetes Mellitus.
        J Manag Care Spec Pharm. 2018; 24: S5-S13
        • Biener A.
        • Cawley J.
        • Meyerhoefer C.
        The High and Rising Costs of Obesity to the US Health Care System.
        J Gen Intern Med. 2017; 32: 6-8
        • Janesick A.S.
        • Blumberg B.
        Obesogens: an emerging threat to public health.
        Am J Obstet Gynecol. 2016; 214: 559-565
        • Brown R.E.
        • Sharma A.M.
        • Ardern C.I.
        • et al.
        Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity.
        Obes Res Clin Pract. 2016; 10: 243-255
        • Equsquiza R.
        • Blumberg B.
        Environmental obesogens and their impact on susceptibility to obesity: new mechanisms and chemicals.
        Endocrinology. 2020; 161
        • Mohajer N.
        • Du C.Y.
        • Checkcinco C.
        • et al.
        Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action.
        Front Endocrinol (Lausanne). 2021; 12: 780888https://doi.org/10.3389/fendo.2021.780888
        • Wu W.
        • Li M.
        • Liu A.
        • et al.
        Bisphenol A and the Risk of Obesity a Systematic Review With Meta-Analysis of the Epidemiological Evidence.
        Dose Response. 2020; 18 (1559325820916949)https://doi.org/10.1177/1559325820916949
        • Lehmler H.J.
        • Liu B.
        • Gadogbe M.
        • et al.
        Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013-2014.
        ACS Omega. 2018; 3: 6523-6532
        • Rochester J.R.
        • Bolden A.L.
        Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes.
        Environ Health Perspect. 2015; 123: 643-650
        • Hormann A.M.
        • Vom Saal F.S.
        • Nagel S.C.
        • et al.
        Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA).
        PLoS One. 2014; 9e110509
        • Bernier M.R.
        • Vandenberg L.N.
        Handling of thermal paper: Implications for dermal exposure to bisphenol A and its alternatives.
        PLoS One. 2017; 12e0178449
        • Pizzorno J.
        Is the Diabetes Epidemic Primarily Due to Toxins?.
        Integr Med (Encinitas). 2016; 15: 8-17
        • Díaz Santana M.V.
        • Hankinson S.E.
        • Bigelow C.
        • et al.
        Urinary concentrations of phthalate biomarkers and weight change among postmenopausal women: a prospective cohort study.
        Environ Health. 2019; 18: 20
        • Philips E.M.
        • Jaddoe V.W.V.
        • Deierlein A.
        • et al.
        Exposures to phthalates and bisphenols in pregnancy and postpartum weight gain in a population-based longitudinal birth cohort.
        Environ Int. 2020; 144: 106002https://doi.org/10.1016/j.envint.2020.106002
        • Corsini E.
        • Luebke R.W.
        • Germolec D.R.
        • et al.
        Perfluorinated compounds: emerging POPs with potential immunotoxicity.
        Toxicol Lett. 2014; 230: 263-270
        • Hung H.
        • Katsoyiannis A.A.
        • Guardans R.
        Ten years of global monitoring under the Stockholm Convention on Persistent Organic Pollutants (POPs): Trends, sources and transport modelling.
        Environ Pollut. 2016; 217: 1-3https://doi.org/10.1016/j.envpol.2016.05.035
        • Lee D.H.
        • Steffes M.W.
        • Sjödin A.
        • et al.
        Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study.
        Environ Health Perspect. 2010; 118: 1235-1242
        • Lee D.H.
        • Steffes M.W.
        • Sjödin A.
        • et al.
        Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes.
        PLoSOne. 2011; 6e15977
        • Mohanto N.C.
        • Ito Y.
        • Kato S.
        • et al.
        Life-Time Environmental Chemical Exposure and Obesity: Review of Epidemiological Studies Using Human Biomonitoring Methods.
        Front Endocrinol (Lausanne). 2021; 12: 778737https://doi.org/10.3389/fendo.2021.778737
        • Deierlein A.L.
        • Rock S.
        • Park S.
        Persistent Endocrine-Disrupting Chemicals and Fatty Liver Disease.
        Curr Environ Health Rep. 2017; 4: 439-449
        • Wattigney W.A.
        • Irvin-Barnwell E.
        • Pavuk M.
        • et al.
        Regional Variation in Human Exposure to Persistent Organic Pollutants in the United States, NHANES.
        J Environ Public Health. 2015; 2015: 571839https://doi.org/10.1155/2015/571839
        • Cirillo P.M.
        • La Merrill M.A.
        • Krigbaum N.Y.
        • et al.
        Grandmaternal Perinatal Serum DDT in Relation to Granddaughter Early Menarche and Adult Obesity: Three Generations in the Child Health and Development Studies Cohort.
        Cancer Epidemiol Biomarkers Prev. 2021; 30: 1480-1488
        • Tawar N.
        • Banerjee B.D.
        • Mishra B.K.
        • et al.
        Adipose Tissue Levels of DDT as Risk Factor for Obesity and Type 2 Diabetes Mellitus.
        Indian J Endocrinol Metab. 2021; 25: 160-165
        • Calafat A.M.
        • Wong L.Y.
        • Kuklenyik Z.
        • et al.
        Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000.
        Environ Health Perspect. 2007; 115: 1596-1602
        • Sunderland E.M.
        • Hu X.C.
        • Dassuncao C.
        • et al.
        A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects.
        J Expo Sci Environ Epidemiol. 2019; 29: 131-147
        • Liu G.
        • Dhana K.
        • Furtado J.D.
        • et al.
        Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study.
        Plos Med. 2018; 15e1002502
        • McLaughlin T.
        • Abbasi F.
        • Lamendola C.
        • et al.
        Heterogeneity in the prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus in obese individuals: effect of differences in insulin sensitivity.
        Arch Intern Med. 2007; 167: 642-648
        • Alonso-Magdalena P.
        • Ropero A.B.
        • Soriano S.
        • et al.
        Bisphenol-A: a new diabetogenic factor?.
        Hormones. 2010; 9: 118-126
        • Hwang S.
        • Lim J.E.
        • Choi Y.
        • et al.
        Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis.
        BMC Endocr Disord. 2018; 18: 81
        • Stahlhut R.W.
        • Myers J.P.
        • Taylor J.A.
        • et al.
        Experimental BPA Exposure and Glucose-Stimulated Insulin Response in Adult Men and Women.
        J Endocr Soc. 2018; 2: 1173-1187
        • Crinnion W.
        • Pizzorno J.
        Clinical environmental medicine.
        Elsevier, St. Louis, Missouri2019
        • Sun Q.
        • Cornelis M.C.
        • Townsend M.K.
        • et al.
        Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses' Health Study (NHS) and NHSII cohorts.
        Environ Health Perspect. 2014; 122: 616-623
        • Lee D.H.
        • Lee I.K.
        • Song K.
        • et al.
        A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002.
        Diabetes Care. 2006; 29: 1638-1644
        • Genuis S.J.
        • Beesoon S.
        • Birkholz D.
        • et al.
        Human excretion of bisphenol A: blood, urine, and sweat (BUS) study.
        J Environ Public Health. 2012; 2012: 185731https://doi.org/10.1155/2012/185731
        • Genuis S.J.
        • Beesoon S.
        • Lobo R.A.
        • et al.
        Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study.
        ScientificWorldJournal. 2012; 2012: 615068https://doi.org/10.1100/2012/615068
        • Genuis S.
        • Kelln K.
        Toxicant Exposure and Bioaccumulation: A Common and Potentially Reversible Cause of Cognitive Dysfunction and Dementia.
        Behav Neurol. 2015; https://doi.org/10.1155/2015/620143
        • vom Saal F.S.
        • Welshons W.V.
        Evidence that bisphenol A (BPA) can be accurately measured without contamination in human serum and urine, and that BPA causes numerous hazards from multiple routes of exposure.
        Mol Cell Endocrinol. 2014; 398: 101-113
        • Furue M.
        • Ishii Y.
        • Tsukimori K.
        • Tsuji G.
        Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards— Lessons from Yusho.
        Int J Mol Sci. 2021; 22: 708https://doi.org/10.3390/ijms22020708
        • Iida T.
        • Nakagawa R.
        • Hirakawa H.
        • et al.
        Clinical trial of a combination of rice bran fiber and cholestyramine for promotion of fecal excretion of retained polychlorinated dibenzofuran and polychlorinated biphenyl in Yu-Cheng patients.
        Fukuoka Igaku Zasshi. 1995; 86: 226-233
        • Nakano S.
        • Noguchi T.
        • Takekoshi H.
        • et al.
        Maternal-fetal distribution and transfer of dioxins in pregnant women in Japan, and attempts to reduce maternal transfer with Chlorella (Chlorella pyrenoidosa) supplements.
        Chemosphere. 2005; 61: 1244-1255