Advertisement
Review Article| Volume 21, ISSUE 1, P157-178, February 2010

Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity

  • Wei Wang
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA

    Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA

    Quality of Life Technology (QoLT) Engineering Research Center, 417 South Craig Street, Room 303, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Jennifer L. Collinger
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA

    Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, 7180 Highland Drive, Building 4, 151R-1, Pittsburgh, PA 15206, USA
    Search for articles by this author
  • Monica A. Perez
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Elizabeth C. Tyler-Kabara
    Affiliations
    Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA

    Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Leonardo G. Cohen
    Affiliations
    Human Cortical Physiology Section and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, 10 Center Drive, MSC 1430, Bethesda, MD 20892, USA
    Search for articles by this author
  • Niels Birbaumer
    Affiliations
    Institute of Medical Psychology and Behavioral Neurobiology, University of Tuebingen, Gartenstr 29, Room 210, D-72074, Tuebingen, Germany
    Search for articles by this author
  • Steven W. Brose
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Andrew B. Schwartz
    Affiliations
    Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA

    Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, E1440 BSTWR, Pittsburgh, PA 15213, USA
    Search for articles by this author
  • Michael L. Boninger
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA

    Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA

    Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, 7180 Highland Drive, Building 4, 151R-1, Pittsburgh, PA 15206, USA
    Search for articles by this author
  • Douglas J. Weber
    Correspondence
    Corresponding author. Department of Physical Medicine and Rehabilitation, Department of Bioengineering, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213.
    Affiliations
    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Ave., Suite 202, Pittsburgh, PA 15213, USA

    Department of Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15213, USA

    Quality of Life Technology (QoLT) Engineering Research Center, 417 South Craig Street, Room 303, Pittsburgh, PA 15213, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Physical Medicine and Rehabilitation Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galvani L.
        De viribus electricitatis in motu musculari.
        Commentarius. (Commentary on the effects of electricity on muscular motion) De Bononiesi Scientarium et Ertium Instituto atque Academia Commentarii. 1791; 7: 363-418
        • Malmivuo J.
        • Plonsey R.
        Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields.
        Oxford University Press, New York1995
        • Pena C.
        • Bowsher K.
        • Costello A.
        • et al.
        An overview of FDA medical device regulation as it relates to deep brain stimulation devices.
        IEEE Trans Neural Syst Rehabil Eng. 2007; 15: 421-424
        • Chen D.
        • Fertig S.J.
        • Kleitman N.
        • et al.
        Advances in neural interfaces: report from the 2006 NIH Neural Interfaces Workshop.
        J Neural Eng. 2007; 4: S137-S142
        • Morrell M.
        Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures?.
        Curr Opin Neurol. 2006; 19: 164-168
        • Skarpaas T.L.
        • Morrell M.J.
        Intracranial stimulation therapy for epilepsy.
        Neurotherapeutics. 2009; 6: 238-243
        • Daly J.J.
        • Wolpaw J.R.
        Brain-computer interfaces in neurological rehabilitation.
        Lancet Neurol. 2008; 7: 1032-1043
        • Donoghue J.P.
        Bridging the brain to the world: a perspective on neural interface systems.
        Neuron. 2008; 60: 511-521
        • Donoghue J.P.
        • Nurmikko A.
        • Black M.
        • et al.
        Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia.
        J Physiol. 2007; 579: 603-611
        • Finn W.E.
        • LoPresti P.G.
        Handbook of neuroprosthetic methods.
        CRC, Philadelphia2002
        • Horch K.W.
        • Dhillon G.
        Neuroprosthetics: theory and practice.
        World Scientific Publishing Company, Hackensack, NJ2004
        • Lebedev M.A.
        • Nicolelis M.A.
        Brain-machine interfaces: past, present and future.
        Trends Neurosci. 2006; 29: 536-546
        • Sakas D.E.
        • Panourias I.G.
        • Simpson B.A.
        An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.
        Acta Neurochir Suppl. 2007; 97: 3-13
        • Sakas D.E.
        • Panourias I.G.
        • Simpson B.A.
        • et al.
        An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology.
        Acta Neurochir Suppl. 2007; 97: 3-10
        • Schwartz A.B.
        • Cui X.T.
        • Weber D.J.
        • et al.
        Brain-controlled interfaces: movement restoration with neural prosthetics.
        Neuron. 2006; 52: 205-220
        • Gage G.J.
        • Ludwig K.A.
        • Otto K.J.
        • et al.
        Naive coadaptive cortical control.
        J Neural Eng. 2005; 2: 52-63
        • Helms Tillery S.I.
        • Taylor D.M.
        • Schwartz A.B.
        Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles.
        Rev Neurosci. 2003; 14: 107-119
        • Jarosiewicz B.
        • Chase S.M.
        • Fraser G.W.
        • et al.
        Functional network reorganization during learning in a brain-computer interface paradigm.
        Proc Natl Acad Sci U S A. 2008; 105: 19486-19491
        • Taylor D.M.
        • Tillery S.I.
        • Schwartz A.B.
        Direct cortical control of 3D neuroprosthetic devices.
        Science. 1829; 296: 2002-2032
        • Birbaumer N.
        • Cohen L.G.
        Brain-computer interfaces: communication and restoration of movement in paralysis.
        J Physiol. 2007; 579: 621-636
        • Hochberg L.R.
        • Serruya M.D.
        • Friehs G.M.
        • et al.
        Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
        Nature. 2006; 442: 164-171
        • Velliste M.
        • Perel S.
        • Spalding M.C.
        • et al.
        Cortical control of a prosthetic arm for self-feeding.
        Nature. 2008; 453: 1098-1101
        • Ashe J.
        • Georgopoulos A.P.
        Movement parameters and neural activity in motor cortex and area 5.
        Cereb Cortex. 1994; 4: 590-600
        • Georgopoulos A.P.
        • Kettner R.E.
        • Schwartz A.B.
        Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.
        J Neurosci. 1988; 8: 2928-2937
        • Georgopoulos A.P.
        • Schwartz A.B.
        • Kettner R.E.
        Neuronal population coding of movement direction.
        Science. 1986; 233: 1416-1419
        • Kettner R.E.
        • Schwartz A.B.
        • Georgopoulos A.P.
        Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. Positional gradients and population coding of movement direction from various movement origins.
        J Neurosci. 1988; 8: 2938-2947
        • Moran D.W.
        • Schwartz A.B.
        Motor cortical representation of speed and direction during reaching.
        J Neurophysiol. 1999; 82: 2676-2692
        • Paninski L.
        • Fellows M.R.
        • Hatsopoulos N.G.
        • et al.
        Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
        J Neurophysiol. 2004; 91: 515-532
        • Schwartz A.B.
        • Kettner R.E.
        • Georgopoulos A.P.
        Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement.
        J Neurosci. 1988; 8: 2913-2927
        • Wang W.
        • Chan S.S.
        • Heldman D.A.
        • et al.
        Motor cortical representation of position and velocity during reaching.
        J Neurophysiol. 2007; 97: 4258-4270
        • Buch E.
        • Weber C.
        • Cohen L.G.
        • et al.
        Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke.
        Stroke. 2008; 39: 910-917
        • Serruya M.D.
        • Hatsopoulos N.G.
        • Paninski L.
        • et al.
        Instant neural control of a movement signal.
        Nature. 2002; 416: 141-142
        • Wessberg J.
        • Stambaugh C.R.
        • Kralik J.D.
        • et al.
        Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
        Nature. 2000; 408: 361-365
        • Leuthardt E.C.
        • Schalk G.
        • Wolpaw J.R.
        • et al.
        A brain-computer interface using electrocorticographic signals in humans.
        J Neural Eng. 2004; 1: 63-71
        • Schalk G.
        • Miller K.J.
        • Anderson N.R.
        • et al.
        Two-dimensional movement control using electrocorticographic signals in humans.
        J Neural Eng. 2008; 5: 75-84
        • Fabiani G.E.
        • McFarland D.J.
        • Wolpaw J.R.
        • et al.
        Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
        IEEE Trans Neural Syst Rehabil Eng. 2004; 12: 331-338
        • Sellers E.W.
        • Donchin E.
        A P300-based brain-computer interface: initial tests by ALS patients.
        Clin Neurophysiol. 2006; 117: 538-548
        • Mellinger J.
        • Schalk G.
        • Braun C.
        • et al.
        An MEG-based brain-computer interface (BCI).
        Neuroimage. 2007; 36: 581-593
        • Lee J.H.
        • Ryu J.
        • Jolesz F.A.
        • et al.
        Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm.
        Neurosci Lett. 2009; 450: 1-6
        • Wolpaw J.R.
        • McFarland D.J.
        Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
        Proc Natl Acad Sci USA. 2004; 101: 17849-17854
        • Freeman W.J.
        • Holmes M.D.
        • Burke B.C.
        • et al.
        Spatial spectra of scalp EEG and EMG from awake humans.
        Clin Neurophysiol. 2003; 114: 1053-1068
      1. Degenhart AD, Sudre G, Collinger J, et al. Comparison of ECoG signal modulation between hand and brain-controlled cursor movement tasks. In: Society for Neuroscience, Washington, DC; 2008.

        • Heldman D.A.
        • Wang W.
        • Chan S.S.
        • et al.
        Local field potential spectral tuning in motor cortex during reaching.
        IEEE Trans Neural Syst Rehabil Eng. 2006; 14: 180-183
        • Niedermeyer E.
        • Silva FLd
        Electroencephalography: basic principles, clinical applications, and related fields.
        5th edition. Lippincott Williams & Wilkins, Philadelphia2004
      2. Wang W, Degenhart AD, Collinger JL, et al. Human motor cortical activity recorded with micro-ECoG electrodes during individual finger movements. In IEEE EMBS, Minneapolis (MN); 2009.

      3. Vinjamuri R, Weber DJ, Degenhart AD, et al. A fuzzy logic model for hand posture control using human cortical activity recorded by micro-ECoG electrodes. In IEEE EMBS, Minneapolis (MN); 2009.

        • Wisneski K.J.
        • Anderson N.
        • Schalk G.
        • et al.
        Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications.
        Stroke. 2008; 39: 3351-3359
        • Hunter S.
        • Crome P.
        Hand function and stroke.
        Rev Clin Gerontol. 2002; 12: 68-81
        • Nakayama H.
        • Jorgensen H.S.
        • Pedersen P.M.
        • et al.
        Prevalence and risk factors of incontinence after stroke. The Copenhagen Stroke Study.
        Stroke. 1997; 28: 58-62
        • Olsen T.S.
        Arm and leg paresis as outcome predictors in stroke rehabilitation.
        Stroke. 1990; 21: 247-251
        • Brucker B.S.
        • Bulaeva N.V.
        Biofeedback effect on electromyography responses in patients with spinal cord injury.
        Arch Phys Med Rehabil. 1996; 77: 133-137
        • Kohlmeyer K.M.
        • Hill J.P.
        • Yarkony G.M.
        • et al.
        Electrical stimulation and biofeedback effect on recovery of tenodesis grasp: a controlled study.
        Arch Phys Med Rehabil. 1996; 77: 702-706
        • Lin K.C.
        • Wu C.Y.
        • Liu J.S.
        • et al.
        Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke.
        Neurorehabil Neural Repair. 2009; 23: 160-165
        • Petrofsky J.S.
        The use of electromyogram biofeedback to reduce Trendelenburg gait.
        Eur J Appl Physiol. 2001; 85: 491-495
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial.
        Lancet Neurol. 2008; 7: 33-40
        • Angelakis E.
        • Stathopoulou S.
        • Frymiare J.L.
        • et al.
        EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly.
        Clin Neuropsychol. 2007; 21: 110-129
        • Heinrich H.
        • Gevensleben H.
        • Strehl U.
        Annotation: neurofeedback – train your brain to train behaviour.
        J Child Psychol Psychiatry. 2007; 48: 3-16
        • Monderer R.S.
        • Harrison D.M.
        • Haut S.R.
        Neurofeedback and epilepsy.
        Epilepsy Behav. 2002; 3: 214-218
        • Sterman M.B.
        • Egner T.
        Foundation and practice of neurofeedback for the treatment of epilepsy.
        Appl Psychophysiol Biofeedback. 2006; 31: 21-35
        • Nijboer F.
        • Furdea A.
        • Gunst I.
        • et al.
        An auditory brain-computer interface (BCI).
        J Neurosci Methods. 2008; 167: 43-50
        • Schaechter J.D.
        Motor rehabilitation and brain plasticity after hemiparetic stroke.
        Prog Neurobiol. 2004; 73: 61-72
        • Tecchio F.
        • Zappasodi F.
        • Tombini M.
        • et al.
        Brain plasticity in recovery from stroke: an MEG assessment.
        Neuroimage. 2006; 32: 1326-1334
        • Jurkiewicz M.T.
        • Mikulis D.J.
        • McIlroy W.E.
        • et al.
        Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study.
        Neurorehabil Neural Repair. 2007; 21: 527-538
        • Celnik P.
        • Stefan K.
        • Hummel F.
        • et al.
        Encoding a motor memory in the older adult by action observation.
        Neuroimage. 2006; 29: 677-684
        • Celnik P.
        • Webster B.
        • Glasser D.M.
        • et al.
        Effects of action observation on physical training after stroke.
        Stroke. 2008; 39: 1814-1820
        • Lotze M.
        • Cohen L.G.
        Volition and imagery in neurorehabilitation.
        Cogn Behav Neurol. 2006; 19: 135-140
        • Stefan K.
        • Classen J.
        • Celnik P.
        • et al.
        Concurrent action observation modulates practice-induced motor memory formation.
        Eur J Neurosci. 2008; 27: 730-738
        • Feldman D.E.
        • Brecht M.
        Map plasticity in somatosensory cortex.
        Science. 2005; 310: 810-815
        • Hebb D.O.
        Organization of behavior.
        Wiley, New York1949
        • Buccino G.
        • Vogt S.
        • Ritzl A.
        • et al.
        Neural circuits underlying imitation learning of hand actions: an event-related fMRI study.
        Neuron. 2004; 42: 323-334
        • Fabbri-Destro M.
        • Rizzolatti G.
        Mirror neurons and mirror systems in monkeys and humans.
        Physiology (Bethesda). 2008; 23: 171-179
        • Iacoboni M.
        • Dapretto M.
        The mirror neuron system and the consequences of its dysfunction.
        Nat Rev Neurosci. 2006; 7: 942-951
        • Rizzolatti G.
        • Sinigaglia C.
        Mirror neurons and motor intentionality.
        Funct Neurol. 2007; 22: 205-210
        • Iacoboni M.
        Neural mechanisms of imitation.
        Curr Opin Neurobiol. 2005; 15: 632-637
        • Hari R.
        • Forss N.
        • Avikainen S.
        • et al.
        Activation of human primary motor cortex during action observation: a neuromagnetic study.
        Proc Natl Acad Sci U S A. 1998; 95: 15061-15065
        • Iacoboni M.
        • Woods R.P.
        • Brass M.
        • et al.
        Cortical mechanisms of human imitation.
        Science. 1999; 286: 2526-2528
        • Caetano G.
        • Jousmaki V.
        • Hari R.
        Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions.
        Proc Natl Acad Sci U S A. 2007; 104: 9058-9062
        • Tkach D.
        • Reimer J.
        • Hatsopoulos N.G.
        Congruent activity during action and action observation in motor cortex.
        J Neurosci. 2007; 27: 13241-13250
        • Tkach D.
        • Reimer J.
        • Hatsopoulos N.G.
        Observation-based learning for brain-machine interfaces.
        Curr Opin Neurobiol. 2008; 18: 589-594
        • Jeannerod M.
        Neural simulation of action: a unifying mechanism for motor cognition.
        Neuroimage. 2001; 14: S103-S109
        • Mast F.W.
        • Jancke L.
        Spatial processing in navigation, imagery and perception.
        Springer, New York2007
        • Dunsky A.
        • Dickstein R.
        • Marcovitz E.
        • et al.
        Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis.
        Arch Phys Med Rehabil. 2008; 89: 1580-1588
        • Ertelt D.
        • Small S.
        • Solodkin A.
        • et al.
        Action observation has a positive impact on rehabilitation of motor deficits after stroke.
        Neuroimage. 2007; 36: T164-173
        • Page S.J.
        • Szaflarski J.P.
        • Eliassen J.C.
        • et al.
        Cortical plasticity following motor skill learning during mental practice in stroke.
        Neurorehabil Neural Repair. 2009; 23: 382-388
        • PRWeb
        World neurostimulation market to reach $5.2 billion by 2012, according to new report by global industry analysts; 2008.
        (Available at:) (Accessed: May 1, 2009)
        • Middlebrooks J.C.
        • Bierer J.A.
        • Snyder R.L.
        Cochlear implants: the view from the brain.
        Curr Opin Neurobiol. 2005; 15: 488-493
        • Sharma A.
        • Nash A.A.
        • Dorman M.
        Cortical development, plasticity and re-organization in children with cochlear implants.
        J Commun Dis. 2009; 42: 272-279
        • Morita I.
        • Keith M.W.
        • Kanno T.
        Reconstruction of upper limb motor function using functional electrical stimulation (FES).
        Acta Neurochir Suppl. 2007; 97: 403-407
        • Moritz C.T.
        • Perlmutter S.I.
        • Fetz E.E.
        Direct control of paralysed muscles by cortical neurons.
        Nature. 2008; 456: 639-642
        • Morrow M.M.
        • Pohlmeyer E.A.
        • Miller L.E.
        Control of muscle synergies by cortical ensembles.
        Adv Exp Med Biol. 2009; 629: 179-199
        • Caspi A.
        • Dorn J.D.
        • McClure K.H.
        • et al.
        Feasibility study of a retinal prosthesis: spatial vision with a 16-electrode implant.
        Arch Ophthalmol. 2009; 127: 398-401
        • Cohen E.D.
        Prosthetic interfaces with the visual system: biological issues.
        J Neural Eng. 2007; 4: R14-31
        • Wong Y.T.
        • Chen S.C.
        • Kerdraon Y.A.
        • et al.
        Efficacy of supra-choroidal, bipolar, electrical stimulation in a vision prosthesis. Conf Proc.
        IEEE Eng Med Biol Soc Minneapolis, MN. 2008;
        • Jackson A.
        • Mavoori J.
        • Fetz E.E.
        Long-term motor cortex plasticity induced by an electronic neural implant.
        Nature. 2006; 444: 56-60
        • Kaczmarek K.A.
        • Webster J.G.
        • Bach-y-Rita P.
        • et al.
        Electrotactile and vibrotactile displays for sensory substitution systems.
        IEEE Trans Biomed Eng. 1991; 38: 1-16
        • Childress D.S.
        Closed-loop control in prosthetic systems: historical perspective.
        Ann Biomed Eng. 1980; 8: 293-303
        • Scott R.N.
        Feedback in myoelectric prostheses.
        Clin Orthop Relat Res. 1990; : 58-63
        • Prior R.E.
        • Lyman J.
        • Case P.A.
        • et al.
        Supplemental sensory feedback for the VA/NU myoelectric hand. Background and preliminary designs.
        Bull Prosthet Res. 1976; : 170-191
        • Shannon G.F.
        A comparison of alternative means of providing sensory feedback on upper limb prostheses.
        Med Biol Eng. 1976; 14: 289-294
        • Anani A.
        • Korner L.
        Discrimination of phantom hand sensations elicited by afferent electrical nerve stimulation in below-elbow amputees.
        Med Prog Technol. 1979; 6: 131-135
        • Clippinger F.W.
        A system to provide sensation from an upper extremity amputation prosthesis.
        in: Fields W.L. Neural organization and its relevance to prosthetics. International Medical Book Corporation, London1973
        • Riso R.R.
        Strategies for providing upper extremity amputees with tactile and hand position feedback – moving closer to the bionic arm.
        Technol Health Care. 1999; 7: 401-409
        • Micera S.
        • Navarro X.
        • Carpaneto J.
        • et al.
        On the use of longitudinal intrafascicular peripheral interfaces for the control of cybernetic hand prostheses in amputees.
        IEEE Trans Neural Syst Rehabil Eng. 2008; 16: 453-472
        • Dhillon G.S.
        • Horch K.W.
        Direct neural sensory feedback and control of a prosthetic arm.
        IEEE Trans Neural Syst Rehabil Eng. 2005; 13: 468-480
        • Weber D.J.
        • Stein R.B.
        • Everaert D.G.
        • et al.
        Limb-state feedback from ensembles of simultaneously recorded dorsal root ganglion neurons.
        J Neural Eng. 2007; 4: S168-S180
        • Waltz J.M.
        Spinal cord stimulation: a quarter century of development and investigation. A review of its development and effectiveness in 1,336 cases.
        Stereotact Funct Neurosurg. 1997; 69: 288-299
        • Yamamoto T.
        • Katayama Y.
        • Obuchi T.
        • et al.
        Thalamic sensory relay nucleus stimulation for the treatment of peripheral deafferentation pain.
        Stereotact Funct Neurosurg. 2006; 84: 180-183
        • Romo R.
        • Hernandez A.
        • Zainos A.
        • et al.
        Sensing without touching: psychophysical performance based on cortical microstimulation.
        Neuron. 2000; 26: 273-278
        • Chapman A.
        Seeing with your fingers: a transcranial magnetic stimulation investigation of multimodal sensory perception.
        J Neurosci. 2007; 27: 7081-7082
        • Blankenburg F.
        • Ruff C.C.
        • Bestmann S.
        • et al.
        Interhemispheric effect of parietal TMS on somatosensory response confirmed directly with concurrent TMS-fMRI.
        J Neurosci. 2008; 28: 13202-13208
        • Antal A.
        • Paulus W.
        Transcranial direct current stimulation and visual perception.
        Perception. 2008; 37: 367-374
        • Hummel F.C.
        • Cohen L.G.
        Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?.
        Lancet Neurol. 2006; 5: 708-712
        • Harvey R.L.
        • Nudo R.J.
        Cortical brain stimulation: a potential therapeutic agent for upper limb motor recovery following stroke.
        Top Stroke Rehabil. 2007; 14: 54-67
        • Nudo R.J.
        • Jenkins W.M.
        • Merzenich M.M.
        Repetitive microstimulation alters the cortical representation of movements in adult rats.
        Somatosens Mot Res. 1990; 7: 463-483
        • Ziemann U.
        • Wittenberg G.F.
        • Cohen L.G.
        Stimulation-induced within-representation and across-representation plasticity in human motor cortex.
        J Neurosci. 2002; 22: 5563-5571
        • Adkins-Muir D.L.
        • Jones T.A.
        Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats.
        Neurol Res. 2003; 25: 780-788
      4. NorthstarNeuroscience: safety and effectiveness of cortical stimulation in the treatment of stroke patients with upper extremity hemiparesis (EVEREST).
        (Available at:) (Accessed May 1, 2009)
        • Plow E.B.
        • Carey J.R.
        • Nudo R.J.
        • et al.
        Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal.
        Stroke. 2009; 40: 1926-1931
        • Hummel F.
        • Celnik P.
        • Giraux P.
        • et al.
        Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
        Brain. 2005; 128: 490-499
        • Reis J.
        • Schambra H.M.
        • Cohen L.G.
        • et al.
        Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
        Proc Natl Acad Sci U S A. 2009; 106: 1590-1595
        • Pascual-Leone A.
        • Tormos J.M.
        • Keenan J.
        • et al.
        Study and modulation of human cortical excitability with transcranial magnetic stimulation.
        J Clin Neurophysiol. 1998; 15: 333-343
        • Perez M.A.
        • Lungholt B.K.
        • Nielsen J.B.
        Short-term adaptations in spinal cord circuits evoked by repetitive transcranial magnetic stimulation: possible underlying mechanisms.
        Exp Brain Res. 2005; 162: 202-212
        • Zuur A.T.
        • Christensen M.S.
        • Sinkjaer T.
        • et al.
        Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation.
        J Physiol. 2009; 587: 1669-1676
        • Chen R.
        • Classen J.
        • Gerloff C.
        • et al.
        Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
        Neurology. 1997; 48: 1398-1403
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • et al.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Di Lazzaro V.
        • Oliviero A.
        • Mazzone P.
        • et al.
        Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation.
        Exp Brain Res. 2002; 147: 108-113
        • Gilio F.
        • Rizzo V.
        • Siebner H.R.
        • et al.
        Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex.
        J Physiol. 2003; 551: 563-573
        • Kobayashi M.
        • Hutchinson S.
        • Theoret H.
        • et al.
        Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.
        Neurology. 2004; 62: 91-98
        • Peinemann A.
        • Lehner C.
        • Mentschel C.
        • et al.
        Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition.
        Neurosci Lett. 2000; 296: 21-24
        • Stefan K.
        • Kunesch E.
        • Benecke R.
        • et al.
        Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation.
        J Physiol. 2002; 543: 699-708
        • Boroojerdi B.
        • Battaglia F.
        • Muellbacher W.
        • et al.
        Mechanisms underlying rapid experience-dependent plasticity in the human visual cortex.
        Proc Natl Acad Sci U S A. 2001; 98: 14698-14701
        • Butefisch C.M.
        • Davis B.C.
        • Wise S.P.
        • et al.
        Mechanisms of use-dependent plasticity in the human motor cortex.
        Proc Natl Acad Sci U S A. 2000; 97: 3661-3665
        • Huang Y.Z.
        • Chen R.S.
        • Rothwell J.C.
        • et al.
        The after-effect of human theta burst stimulation is NMDA receptor dependent.
        Clin Neurophysiol. 2007; 118: 1028-1032
        • Touge T.
        • Gerschlager W.
        • Brown P.
        • et al.
        Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?.
        Clin Neurophysiol. 2001; 112: 2138-2145
        • Jankowska E.
        Interneuronal relay in spinal pathways from proprioceptors.
        Prog Neurobiol. 1992; 38: 335-378
        • Valero-Cabre A.
        • Oliveri M.
        • Gangitano M.
        • et al.
        Modulation of spinal cord excitability by subthreshold repetitive transcranial magnetic stimulation of the primary motor cortex in humans.
        Neuroreport. 2001; 12: 3845-3848
        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850
        • Hummel F.C.
        • Voller B.
        • Celnik P.
        • et al.
        Effects of brain polarization on reaction times and pinch force in chronic stroke.
        BMC Neurosci. 2006; 7: 73
        • Ragert P.
        • Vandermeeren Y.
        • Camus M.
        • et al.
        Improvement of spatial tactile acuity by transcranial direct current stimulation.
        Clin Neurophysiol. 2008; 119: 805-811